Prior reduced fill-in in solving equations in interior point algorithms
نویسنده
چکیده
The efficiency of interior-point algorithms for linear programming is related to the effort required to factorize the matrix used to solve for the search direction at each iteration. When the linear program is in symmetric form (i.e., the constraints are Ax < b, x > 0 ), then there are two mathematically equivalent forms of the search direction, involving different matrices. One form necessitates factoring a matrix whose sparsity pattern has the same form as that of (A AT). The other form necessitates factoring a matrix whose sparsity pattern has the same form as that of (AT A). Depending on the structure of the matrix A, one of these two forms may produce significantly less fill-in than the other. Furthermore, by analyzing the fill-in of both forms prior to starting the iterative phase of the algorithm, the form with the least fill-in can be computed and used throughout the algorithm. Finally, this methodology can be applied to linear programs that are not in symmetric form, that contain both equality and inequality constraints.
منابع مشابه
A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملStrong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms
Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space. So many have used algorithms involving the operator norm for solving split equality fixed point problem, ...
متن کاملMatching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization
Interior-point methods are among the most efficient approaches for solving large-scale nonlinear programming problems. At the core of these methods, highly ill-conditioned symmetric saddle-point problems have to be solved. We present combinatorial methods to preprocess these matrices in order to establish more favorable numerical properties for the subsequent factorization. Our approach is base...
متن کاملAn annotated bibliography of network interior point methods
This paper presents an annotated bibliography on interior point methods for solving network flow problems. We consider single and multicommodity network flow problems, as well as preconditioners used in implementations of conjugate gradient methods for solving the normal systems of equations that arise in interior network flow algorithms. Applications in electrical engineering and miscellaneous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002